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S u m m a r y  

This paper synthesises previous studies of the terminal speed of single drops or bubbles 
to provide a universal calculational procedure. 

I n t r o d u c t i o n  

The purpose of  this paper is to present a straightforward correlating 
scheme for calculating the terminal velocity of  single drops or bubbles acted 
on by a gravitational field in an infinite medium. The terminal velocity of a 
single particle is of  interest in many practical applications (e.g.,  atmospheric 
fallout, oil drops released by seepage under water, aeration of  lakes) and also 
provides a starting point for the analysis of the flow of suspensions in pipes, 
fluidised beds, hindered settling, bubble columns and numerous other 
systems. 

A great deal of work has been done in this field. However, previous authors 
have been concerned with a limited range of  parameters and have presented 
their results with an often bewildering array of  various dimensionless groups. 
Correlations derived by different authors are sometimes incompatible or are 
hard to compare because of the method of presentation. Thus there is a need 
for a survey which presents the significant past  work on a common basis and 
with an economy of complexity (some previous surveys, such as Harper's [1], 
have been addressed largely to applied mathematicians). The emphasis of this 
work is on utility, convenience and brevity, while attempting to offer 
sufficient explanation and evidence to convince the reader that the results are 
reasonable. 

It is intended that  these results will provide an improvement over the work 
of Peebles and Garber [2], which is recommended in ref. [3] for calculating 
bubble rise velocities, and achieve consolidation by treating bubbles and 
drops simultaneously. In addition, by presenting results for a large variety of 
systems on a common scale a perspective will be obtained of the confidence 
with which practical performance can be predicted. 
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A solid spherical particle 

The usual method for deriving the terminal speed of  a spherical particle 
falling (or rising) under gravity is to consider the balance between buoyancy  
and drag forces. Employing the drag coefficient for a particle in an infinite 
medium, CDoo, we have 

4 r3 2 1 v~ (1) ~ 7T g a p  = C D  oo 7r r -2  pf 

Ap is the density difference, v~ the terminal speed, pf the density of  the 
surrounding fluid and r the particle radius. The drag coefficient is a function 
of  the Reynolds  Number,  

Re~ - 2 pf v~ r (2) 
/if 

Since both  voo and r appear in each of  eqns. (1) and (2), the dependence of 
terminal speed on size must  usually be determined by iteration. A more direct 
approach is to combine eqns. (1) and (2) to generate dimensionless forms of 
the speed and radius which only contain one of  these variables, thus 

v* ( 3  R e ~ )  1/3 ( Pf2 ] 1/3 
= = v~ [#f---g-EpJ (3) CD~ 

r* ( ~ 2  C D o o R e : )  1/3 [PfgAo] 1/3 = = r [ ~  ] (4)  

If the relationship be tween CD~ and Re~ is known, v* may be directly 
related to r*, as shown in Fig. 1. 

For computat ional  purposes it may be more convenient to have an 
analytical correlation. We therefore approximate the curve in Fig. 1 by four 
segments, each representing a straight line on log paper, as shown in Table 1. 

These lines have not  been chosen "opt imal ly"  to minimise deviation from 
the drag coefficient curve but  for convenience in estimating velocities to 
within 10% accuracy, it being realised that  fluid properties and particle 
dimensions are usually not  known well enough to just ify greater precision. 

TABLE1 

General cor re la t ion  for  te rminal  speed of spherical  part icles  

Region Equation Range 

2 r, 2 r* < 1.5, v* < 0.5 1 v*= -~ 

2 v* = 0.307 r *1"21 1.5 < r* < 10, 0.5 < v* < 5 

2B v* = 0 . 6 9 3 r  *°'ss8 10 < r * <  36, 5 <  v* < 15 

2C v* = 2 . 5 r  *1/2 36 < r*, 15 < v* 
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Fig. 1. Dimensionless representation of terminal speed of solid spheres. Dashed c u r v e  

derived from ref. [9]. 

The four subdivisions actually have physical significance. Region 1 is a 
regime of entirely viscous flow; in ttegion 2 inertia forces become important;  
Region 2B reflects the effect of vortex shedding, while Region 2C corresponds 
to a fully-developed turbulent  wake. Values of r* greater than 1000, which 
are needed to bring about  the sudden drop in drag coefficient which occurs 
above Re~ = 2 X 10 s, are far higher than are usually encountered in practice. 

Should an interpretation of the various regimes be desired in terms of the 
conventional l~eynolds Number we can combine eqns. (3) and (4) to get 

Re~ = 2 v* r* 

The breakpoints between the various regions in Table 1 are then at Re~ = 
1 .5 ,100  and 1080, respectively. 

A correlation scheme in this form, though particularly convenient, does 
not  seem to be in common use at present. However, there is a precedent for a 
similar method in the work of Hughes and Gilliland [4], while Graf [5] 
discusses the possibility of such an approach, based on the paper by Schiller 
and Naumann [6], without  deriving explicit results. Baker and Chao [7] and 
also Licht and Narasimhamurty [8] mention a similar technique. 
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Drops and bubbles 

The case of drops and bubbles is complicated by the additional action of 
two major variables and several minor ones. 

The major new phenomena are: 
(a) surface tension, which influences the particle shape; 
(b) cleanliness, which influences the boundary condition at the interface 

and may exert a critical effect on stability. 
The minor variables include the viscosity and density of the fluid inside 

the drop or bubble. 
In order to account for surface tension we must introduce one more 

dimensionless group. For example, this could be the Weber Number 

We - 2pc v~r (6) 
O 

which represents a balance between surface tension and inertia effects. The 
Weber Number is in common use for describing the stability of  drops in gas 
streams. 

Since we wish to develop common equations for drops and bubbles, as 
much as possible, we shall use the subscripts c and d to denote the continuous 
and discontinuous phases, respectively. Ap will represent the magnitude of 
the density difference. Equations (3) and (4) then become 

U • Uo¢ ( P~cg~P 1/3 = (7) 

r ' - - r  " ~ c  (8) 
The various dimensionless groups can be combined to produce new combi- 

nations which are particularly convenient. For instance, we may eliminate 
both v~ and r by combining r*, v* and We to get a group called the "Archimedes 
Number"  in ref. [3], 

3 2 [ o Pc } lz2 
WAr = ~ p c ~  - (9) 

This number is a constant for a given two-fluid system. It has the same 
significance as the "property group" ( Y  = guf4/pfa 3) used by White and 
Beardmore [10], the parameter Sd used by Hughes and Gilliland [4], the 
"M Number"  used by Haberman and Morton [11] and by Moore [12, 13], 
the group G1 used by Peebles and Garber [2], and the parameter P used by 
Hu and Kintner [14]. 

Since P --- NAt 2 and is perhaps more well known than NAt it will be used 
in the rest of this paper. Explicitly, we have 

3 2 
O PC 

P - 4 ( 1 0 )  
Pc gAp 
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A dimensionless group which represents the balance between gravitational 
and surface tension forces is 

B -  gr2Ap (11) 
o 

which is variously known as the Bond Number, the EStvSs Number and the 
Laplace Number. Sometimes it is defined using the diameter instead of  the 
radius, or as the square root  of the expression given in eqn. (11). 

A dimensionless velocity which is independent of viscosity or radius may 
be obtained by combining eqns. (7) and (10) to get 

K = v* P -1/12 = vooPc 1/2 (g g A p)  -1/4 (12) 

which has been called the Kutateladze Number, particularly when it describes 
a liquid phase surrounded by its own vapor. 

If surface tension were the only variable distinguishing drops and bubbles 
from solid particles we should expect that  a correlation of v* versus r* for 
various values of NAr or P would describe these systems. This is partly true, 
however; over a certain range of the parameters, "cleanliness" exerts a 
significant influence and appears to be the explanation for the scatter noted 
by numerous experimenters. 

A general correlation scheme 

Individual "regions" will first be presented, followed by a summary of 
overall results and conclusions. 

Region 1 "Creeping flow" 
If the drops or bubbles are sufficiently small (r* ~ 1.5), viscous forces 

dominate inertia forces and the rise velocity can be predicted from the 
theory of "creeping f low" as long as the interface remains spherical [15, 16]. 
The classical result in this case is 

[ 3p d + 3 Pc 
v* = 2 r ' 2  ~3Pd + 2 ~ c ]  (13) 

where Pc is the viscosity of the continuous phase and Pd the viscosity of the 
discontinuous phase. Equation (13) implies that  bubbles (Pc >>/~d)  would 
rise 50% faster than solid spheres and that  the viscosity ratio would correlate 
data taken with different liquid--liquid systems. 

There is a shortage of data taken in Region 1, most authors having worked 
with relatively inviscid fluids and with other than microscopic particles. In 
the case of bubbles, Haberman and Morton [11] concluded, from an 
examination of both their own data and previous work, that  interfacial 
effects were far more important  than internal viscosity in determining how 
far the bubbles behaved as "fluid spheres" with internal circulation. Slight 
amounts  of impurities concentrated on the interface were apparently adequate 
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to give it sufficient rigidity to suppress internal circulation altogether. 
Sufficiently small bubbles in any liquid behaved as solid spheres. Bond and 
Newton [17] also found that small bubbles or drops behaved as solid spheres 
while larger ones obeyed eqn. (13). 

Figure 2 shows some of Haberman and Morton's data in Region 1. Bubbles 
in mineral oil approach the "fluid sphere" line while in corn oil solutions the 
bubble interface is apparently rigid, perhaps due to the preferential concentra- 
tion of certain molecules there. 

The very small number of  data points obtained by Peebles and Garber [2] 
in this region are also very close to the solid sphere line. 

Unfortunately,  the extensive data of Hu and Kintner [14] for drops of  
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Fig. 2. Data for bubbles in Region I. 
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various fluids in water were all obtained with r* > 1.5, beyond the range 
included in Region 1. 

It might be suspected that  if surface tension forces were inadequate to 
maintain a spherical shape to the interface, eqn. (13) would cease to be valid. 
This might be the case for sufficiently small values of P but has not  so far 
been observed in practice. Haberman and Morton [11] found that  all bubbles 
in viscous fluids were spherical below about  r* = 1 in their experiments. 

Region 2 
Region 2 covers the range of  dimensionless radii between r* = 1.5 and r* = 

10. In this region, solid spheres are described approximately by the equation 
given in Table 1, namely, 

v* = 0.307 r* 1.21 (14) 

In their studies of air bubbles rising in various liquids, Haberman and 
Morton [11] found some agreement with eqn. (14). However, some velocities 
of rise were significantly above this prediction. Although the actual performance 
varied rather whimsically between the different fluids, an envelope could be 
drawn which gave an upper limit to the observed velocities. This upper bound 
can be represented by the "fluid sphere" line in Region 2, which we shall call 
Region 2A, with the equation 

v* = 0.408 r *l'.s (15) 

Peebles and Garber [2] did not  present upper and lower bounds in their 
paper but instead correlated their own data for bubbles rising in liquids, as 
well as data of Allen [18] and Datta, Napier and Newitt [19] with an 
equation which is equivalent to 

v* = 0.33 r .1"~8 (16) 

Equation (16) is intermediate between eqns. (14) and (15). Indeed, 
Peebles and Garber's data all lie between these limits, as shown in Fig. 3. 

Hu and Kintner's data [14] for a large variety of liquid droplets in water 
are shown in Fig. 4. In Region 2 the data are generally slightly above the line 
representing eqn. (14) but well below the line corresponding to eqn. (15). Hu 
and Kintner's data are remarkably self-consistent in Fig. 4, although the 
ratio #c/#d varied from 0.1 to almost 2, and follow the "solid spheres" line 
closely in Region 2. 

Figure 4 also shows that  water drops falling in air [20] behave approxi- 
mately as solid spheres in this region. 

Regions 2B, 2C and 2D 
As long as the surface tension is sufficiently large, bubbles and drops 

continue to behave as spheres when r* is increased above 10. Thus, in Fig. 4, 
most  of the dispersed drop systems studied by Hu and Kintner follow the 
equation describing region 2B in Table 1 until they become too large to 
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remain spherical and their drag coefficients increase. Water drops in air behave 
similarly. Only the aniline droplets used by Hu and Kintner depart  significant- 
ly from the "solid spheres" curve. 

The "fluid spheres" curve can also be continued beyond  r* = 10. The 
extensive work of  Moore [12, 13] led to the predictions shown in Fig. 5. 
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P=lO I0 

p = , o  s 

p= I0 e 

. . . .  LIMITING CURVE FOR VERY LARGE 
I J l I 
5 I 0 ,  20 40  

r 

Fig. 5. Moore's  predictions for fluid spheres [12, 13]. 

For very large values of  P, Moore's  results agree fairly well with eqn. (15) up 
to r* = 10 and have a limit at large r* corresponding to CD® = 48/Re=,  which 
is equivalent to 

r* 2 
v* = (17) 

9 

A reasonable fit to Moore's  entire curve for large P is obtained by using eqn. 
(15) up to r* = 13.4, v* = 20 and eqn. (17) thereafter.  

For finite values of  P, increase in radius eventually leads to interface 
distortion, oscillations, vortex-shedding, etc., all of  which combine to enhance 
the drag. Some of Moore's predictions for finite P are shown in Fig. 5. The 
limit on the right-hand end of  these curves is a constant  value of  Weber 
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Number, predicted by Moore to be 3.75, which corresponds to a new Region 3. 
Haberman and Morton's data for air bubbles rising in Varsol, methyl  alcohol 
and turpentine are close to Moore's predictions in this region. Other data fall 
below Moore's curves but above the "solid sphere" lines. 

Apparently, no combination of fluids yet  tested has had a high enough P 
number for data to be taken to compare with eqn. (17). However, there 
appears to be evidence of an intermediate regime (2D), perhaps for systems 
which are not  quite clean enough to behave entirely as "fluid spheres", 
which obeys an equation of similar form. Haberman and Morton's data for 
bubbles rising in distilled water, (Fig. 6), follow quite closely the line 

= ~ 7  r*2 (18) U* 

corresponding to a drag coefficient of CD~ = 72/Re~. (In impure water the 
"solid sphere" line is followed.) Similarly, data of Thorsen e t  al. [21] for 
drops of o-dichlorobenzene, carbon tetrachloride or ethylene bromide falling 
in water follow the line 

v* = 0.05 r .2 (19) 

in this region (Fig. 7). The drag coefficient in this case is CD~ = 107/Re~. 
Other data taken by Thorsen e t  al. for a variety of liquid--liquid systems 

either agree with the "solid sphere" line or lie between it and eqn. (19). In 
some cases there is a distinct discontinuity in behavior (Fig. 7). The results 
appear to be very sensitive to the "cleanliness" of the system and its effect 
on interfacial phenomena. 
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Fig. 6. Air bubbles rising in water (Haberman and Morton [11 ] ). 
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Similar conclusions can be reached from the work of Licht and Narasim- 
hamurty  [8],  who studied the terminal velocities in water of  droplets of  six 
different liquids. In Region 2B most  of their results were close to the "rigid 
sphere" line. However,  ethyl chloroacetate drops gave results closer to 
eqn. (19). 

Region 3 
In Region 3 the shape of  bubbles or drops departs significantly from 

sphericity, they move in helical or zig-zag paths, and the velocity decreases as 
the "effective radius", r, increases. The effective radius is the radius of  a sphere 
which would have the same volume as the dispersed globule. 

Several authors have identified this region as characterised by  a constant  
value of Weber Number.  Moore gives the value 3.745, Peebles and Garber 
3.65 for bubbles [2],  Hu and Kintner 3.58 for drops [14],  Winnikow and 
Chao 4.08 for drops [22].  Thorsen et al. [21],  working with liquid drops 
falling in water obtained 

We = ( _6"8__ ) 2  1 (20) 
1 . 6 5 - A P  3 P d + 2  

Pd Pc 
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However, over the range actually studied by these authors a mean value of 
We = 4 represents the data within experimental accuracy (Fig. 7). 

Since various factors can reduce the velocity below the value given by eqn. 
(20), a reasonable upper limit to take is We = 4, or, if a direct equation for 
v~ is desired, 

v~ = (21) 

which is equivalent to 

v* = x /2  r *-lIe P 1/6 (22) 

The only data which appear to give higher values than these predictions in 
Region 3 are the recent results of Edge and Grant [23]. However, the apparent 
inconsistency is due to their unusual definition of We. 

The results of Licht and Narasimhamurty [8], who studied liquid drops 
falling in water for values of P between 3.35 X 109 and 6.8 X 10 '°, are 
almost all within 10% of eqn. (22) in Region 3 with the tendency being for 
the data points to follow smooth curves rather than sudden transitions 
between regimes. Thus the first onset of zig-zag motion and departure from 
Region 2 occurs at a Weber Number rather less than 4 (approximately 2 or 3) 
[24, 25, 26] with a short transition from there to Region 3 as r* is increased. 

Reg ion  4 
In Region 4 the bubble or drop velocity is independent of size and 

corresponds to a constant value of K (defined by eqn. (12)). For bubbles, 
Peebles and Garber [2] give K = 1.18, a value which is probably too low due 
to the influence of the proximity of the walls of their vessel on the larger 
bubbles. Harmathy [27] gives K = 1.53 for bubbles. Levich [28] and 
Mendelson [29] give K = x/2. Kutateladze [30] gives K = 1.28 for drops. 
Haberman and Morton's data for air bubbles in water [11] support the 
value x/2. Hu and Kintner's extensive data [14] for drops (see the right-hand 
side of Fig. 4) give K between 1.39 and 1.57 with an average of 1.48. Water 
drops falling in air (the data sho~a ~n Fig. 4) have a maximum velocity 
corresponding to K = 1.97 but the data do not  extend to large enough values 
of r* to be clearly in Region 4. The drops may also not have fallen far enough 
to develop a "ful ly-distorted" shape. 

The chosen value depends to some extent  on the method of definition. 
K = x/2 probably represents the minimum velocity between Regions 3 and 5, 
whereas a slightly higher value does a better job of correlating data which 
include the transition between regions. 

In terms of  the dimensionless velocity and radius defined earlier we may 
write, for Region 4, 

v* = KP  1/12 (23) 
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with a recommended  value of  K = x/2 for the " t r u e "  minimum or inflection 
point  in curves such as those shown in Fig. 6, while K = 1.56 correlates data 
within about  10% over a wider range of  r*. 

It is easily checked that  Regions 3 and 4 meet  on the line 

v .2 = 2 r* for K = x/2 (24) 

o r  

v .2 = 3 r* for K = 1.56 or 6 °'28 (25) 

The transitions between Regions 3 and 4 in Fig. 4 can be seen to lie 
between the lines representing eqns. (24) and (25). 

The Bond Number  at the intersection between Regions 3 and 4 has the 
value 4/K 4, i.e. I if K = x/2 and 2/3 if K = 6 °'28. 

It is not  clear whether  cleanliness or the minor variables of  viscosity or 
density ratio have any significant influence in this region. 

Region  5 
Very large bubbles assume a "spherical cap"  shape with a flat base. Both 

viscous and surface tension forces can be neglected and the rise velocity is 
given by a balance between form drag and buoyancy.  The analytical result 
derived by Davies and Taylor  [31] for  this regime is equivalent to 

v~ = V g r A p  (26) 
Pc 

o r  

v* = r .1/2 (27) 

(Some authors give v* = 1.02 r* 1/2 but  the 2% difference is un impor tan t  in 
practice and the simpler expression is preferable.) 

Equat ion (27) has been confi rmed for several systems. Figure 6 shows 
close agreement for  air bubbles in water. Davenport  et al. [32] studied 
spherical cap bubbles of air rising through mercury in tubes 15 cm in 
diameter.  Their results agree with eqn. (27) if the correct ion for finite tube 
radius, R, given by Wallis [33] is used, i.e. 

r < 1 Vb _ 1 (28) 
R 8 v -Z-  

1 r v b < ~ < 0.6 - -  = 1 . 1 3 e  -r/R (29) 
U¢¢ 

Comparison between theory  and exper iment  is shown in Fig. 8. 
The transition between Regions 4 and 5 occurs at We = 8, B = 4 for K = 

x/2 in Region 4 (or We = 12, B = 6 if K = 1.56). Thus the values of  bubble 
radii at the beginning and end of  Region 4 only differ by a factor  of  2 or 3. 
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However, Region 4 has significant practical importance since bubbles which 
are released from porous plates or wettable horizontal surfaces tend to have 
Bond Numbers within this range. 

Unlike bubbles, drops appear to have no Region 5, becoming unstable and 
breaking up at about  the Weber Number  (or Bond Number)  characteristic of 
the upper limit of Region 4. Hu and Kintner [14] increased the volume of 
their droplets until they reached this limit, which in most  cases lay close to 
the predictions of  eqn. (27) (Fig. 4). 

Transition between the various regions 

Very small droplets or bubbles obey eqn. (13), usually behaving approxi- 
mately as solid spheres if they are small enough. Very large bubbles obey 
eqn. (27), which is also close to the condit ion for large drops to shatter. 
Thus the dimensionless variables r* and v* determine the behavior at both 
extremes. In between, the characteristics of a particular fluid combination 
depend both  on the value of P and on the somewhat  erratic parameter of 
"cleanliness". 

At high values of P the normal sequence, as r* is increased, is in ascending 
order of  Regions, starting at 1 and ending at 5 as shown, for example, in 
Fig. 6. The presence of impurities may suppress Region 3, which usually 
provides an upper limit to rise velocity in its range of  influence, leading to a 
direct transition from Region 2 to Region 4. 
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At lower values of  P, Regions 3 and 4 become compressed be tween 
Regions 2 and 5, eventually disappearing completely below P ~ 100. For 
example, Fig. 9 shows a direct transition from Region 1 through Region 2A 
to Region 5 for air bubbles rising in mineral oil, and a similar transition for 
air bubbles rising in a 68% corn syrup solution. The same Figure shows a 
progression from Region 2 through Region 4 to  Region 5 for bubbles  rising 
in a 56% glycerin solution. For  globules which behave as solid spheres the 
intersection between eqns. (24) and (14) shows that Region 3 will disappear 
for P < 10 s. 
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/ 

/ 
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P, 69 / 
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EQ (23). K • ,V/~ 

CORN SYRUP-WATER P = 4 7 2  

O. 

SOLID SPHERES 
FLUID SPHERES 

0.21 1 I I I I 
2 4 r~  I0 20 4 0  

Fig. 9. Progressive disappearance of Regions 3 and 4 as the value of P is decreased 
(Haberrnan and Morton [11 ] ). 

Figure 10 presents all of  the Regions on one graph, summarising these 
results, showing where the various regions of  behavior can occur and the 
transitions between them. 

Summary 

Figure 10 summarises the results graphically by  a plot of  v* versus r* for 
various values of  P. Algebraic expressions are available for all of  the lines on 
the graph, as shown in Table 2. 

Region 3 corresponds to a constant  value of  the Weber Number  (We = 4) 
and meets Region 4 at a fixed value of  Bond Number  (B = 1). 
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Fig. 10. Summary graph presenting all results. Behavior in Regions 3 and 4, which overlap, 
is strongly influenced by cleanliness. 

Region 4 meets Region 5 at B = 4, We = 8. 
In most practical cases the transitions between regions are not as sharp as 

the correlations indicate. 
In all regions except Regions 4 and 5, fluid cleanliness exerts a strong 

influence, giving rise to significant uncertainties when making practical 
predictions. The expressions given in this paper, however, should serve to 
provide upper and lower bounds to the possible values of  terminal speed. 
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T A B L E  2 

Reg ion  E q u a t i o n  Range  

Solid spheres 
1 V* = 2 r ' 2  

9 

2 v* = 0 .307 r .1"21 

2B v* = 0 .693  r *°'8ss 

2C v* = 2.5 r *1/2 

Fluid spheres (~c > >  ~d)  

1 V* r* 2 
3 

2A v* = 0 .408  r * l ' s  

3 v* -- x /2  r* -1/2 p1/6 

4 v* = x /2  p1/12 

5 V* = r *1/2 

r* < 1.5, v* < 0.5 

1 . 5 <  r* < 10, 0 . 5 <  v* < 5 

1 0 <  r* < 36, 5 <  v* < 15 

3 6 <  r*, 1 5 <  v* 

r* < 1.5, v* < 0 .75 

1.5 < r* < 13.4,  0 .75 < v* < 20 

13.4  < r*, 20 < v* 

B e t w e e n  t he  " f lu id  s p h e r e "  l ines 
and  v . 2  = 2 r* 

B e t w e e n  t he  " so l id  s p h e r e "  l ines 
and  Reg ion  5 

Only  valid for  bubbles .  Drops  b reak  
up  in th is  reg ion  

N o m e n c l a t u r e  

CD*O 
g 
r 

R 
v 

p 
p 
/xp 

o 

drag coefficient in an infinite medium 
acceleration due to gravity 
particle radius; radius of  a sphere having the same volume as a drop 
or bubble  
tube  radius 
terminal speed 
viscosity 
density 
density difference 
surface tension 

Subscripts 
b b u b b l e  

c continuous phase 
d discontinuous phase 
f f l u i d  
00 i n  a n  i n f i n i t e  m e d i u m  
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Dimensionless groups 
B g r2 Ap 

o 
K V~pc 1/2 (go A p )  -1/4  

o pc  1/2 
N A r  P c ~  

3 2 
0 Pc 

P ~e gap 

2 P c  v ~ r  
R e ~  

Pc 

r* r( pcgAp ) 2  1/3 

V* U~ Pc g-Ap 

2 p  c V~ r 
We G 

" B o n d  N u m b e r "  

" K u t a t e l a d z e  N u m b e r "  

" A r c h i m e d e s  N u m b e r "  

" P r o p e r t y  G r o u p "  (NAr  2) 

" R e y n o l d s  N u m b e r "  

" D i m e n s i o n l e s s  R a d i u s "  

" D i m e n s i o n l e s s  S p e e d "  

" W e b e r  N u m b e r "  
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A p p e n d i x  

E x a m p l e s  
In  o rder  t o  i l lus t ra te  t he  m e t h o d s  deve loped  in this paper ,  several  examp le s  

will be  w o r k e d  o u t  in deta i l  and  c o m p a r e d  wi th  da t a  which  were  n o t  used  to  
der ive the  corre la t ions .  D a t a  will genera l ly  be  chosen  t o  c o r r e s p o n d  to  
" t r a n s i t i o n  reg ions" ,  thus  p rov id ing  a m o r e  severe tes t  o f  the  t heo ry .  

E x a m p l e  1. Licht  and  N a r a s i m h a m u r t y  [8] measu red  the  t e rmina l  speed 
of  c a r b o n  t e t r ach lo r ide  d rop le t s  in wa t e r  in a ver t ical  co lumn ,  six inches  in 
d i ame te r .  When the  equiva len t  radius  o f  the  d r o p  was 0 .29 c m  the  ve loc i ty  
was 19.6  cm/sec .  The  re levant  p rope r t i e s  were  o = 41 .6  d y n e s / c m ,  Pd = 
1 .584  g/ml ,  Ap = 0 .587 g /ml ,  Pc = 0 .997 g/ml ,  Uc = 0 .894  cP, Pd = 0 .9296  cP. 

To  a p p l y  t he  t h e o r y  we first  ca lcula te  P using eqn.  (10) 

41.63 X 0.9975 
P = = 1 . 9 5 X  101° 

(0 .00894)  4 X 981 X 0 .587  

T h e n  r* is ca lcu la ted  f r o m  (8) 

r ,  = 0 .29  ( 0 . 9 9 7 X 9 8 1 X 0 . 5 8 7 )  1/a 
0 .008942 = 56 

Look ing  a t  Fig. 10 we  see t h a t  the  po in t  o f  in te res t  is near  the  t rans i t ion  
b e t w e e n  Regions  3 and  4. F o r  Reg ion  3, we  have  

v* = x /2  r * - l / 2  P i /s  = 9.8 

whi le  for  Reg ion  4 

v* = x /2  p i / i 2  = 10.2 

The  ac tua l  observed  value o f  v* is der ived f r o m  the  da ta  by  using eqn.  (7), 

( 0"9972 ) 1/3 
v* = 19.6  0 .00894  X 981 X 0 .587  = 11.3  
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Thus the  measured  ve loc i ty  is a b o u t  11% above  the p red ic ted  value. However ,  
in this t rans i t ion  region we expec t  t ha t  a value of  K = 1.56, used in eqn. (23),  
might  give a be t t e r  es t imate .  In this case the  p red ic ted  value of  v* is 11.25,  
very  close to  the  measured  value. 

Example 2. Thorsen ,  S torda len  and Ter jesen [21] measured  the  terminal  
speed o f  clean e thy lene  b romide  drops  in wate r  at 25°C. A d rop  wi th  radius 
0 .064 cm had a speed of  24.65 cm/sec ,  while one  wi th  radius 0 .1015 cm 
t raveled at 27 .15  cm/sec.  

The  relevant  p r o p e r t y  values were o = 31.9 dynes / cm,  Pc = 0 .997 g/cc, 
Ap = 1 .173 g/cc, Pc = 0 .894 cP. 

Proceeding  as in Example  1 we f ind tha t  P = 4.39 X 109 and the  
expe r imen ta l  values in dimensionless  fo rm axe: 

Po in t  A r* = 15.55,  v* = 11.3 
Point  B r* = 24.66,  v* = 12.46 

These poin ts  fall in the  region be tween  Regions 2 and 3. Since the  fluid is 
said to  be " c l e a n "  it is appropr i a t e  to  use eqns. (19) and (22),  choos ing  the 
lower  p red ic ted  value in each case. 

F o r  po in t  A, using r* = 15.55,  we p red ic t  v* = 12.1 f rom (19) and v* = 
14.6 f rom (22).  The  lower value overes t imates  the  observed resul t  b y  7%. 

F o r  po in t  B, using r* = 24 .66 ,  we pred ic t  v* = 30.4  f ro m  (19) and v* = 
11.6 f r om (22).  The  observed value is high by  7%. 

Example 3. Habe rman  and M o r t o n  [11]  s tudied air bubbles  rising in clean 
m e t h y l  alcohol .  Some  poin ts  f rom the  curve shown in the i r  r e p o r t  axe 

r (cm) 0 .025 0 .04 0 .068 0.1 0.17 0.3 
v (cm/sec)  12 25 25 21 18 20 

The p r o p e r t y  values axe Pc = 0 .0052  poise, Pd ~ 0, Pc = 0 .782 g/cc,  o = 21.8 
dynes / cm.  P is f ound  to  be 1.12 X 10 ~° and the  values o f  the data  in 
dimensionless  f o rm  are 

r ~ 7 .02 11.23 19.1 28.1 47.8 84.4  
v* 6 .34 13.2 13.2 11.1 9.5 10.56 

The  first  two  poin ts  should fall in Region 2A for  which an upper  b o u n d  is 
given by  (15) wi th  (16) giving a lower  est imate .  The  pred ic t ions  are 

r* 7.02 11.23 
v* (15) 7.6 15.4 
v* (16) 4 .03 7.3 

The  da ta  fall be tween  the  predic t ions ,  ne i ther  o f  which is par t icu lar ly  
accura te .  

The  th i rd  po in t  falls in Region 3. The  p red ic ted  value o f  v* is 15.3, an 
overes t imate  by  16%. 
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The fourth point lies near the transition between Regions 3 and 4. For 
Region 3, (22) gives v* = 12.6, while (23) gives v* = 9.7 for K = x/2 and v* = 
10.7 for K = 1.56. The observed value of v* = 11.1 is very close to the mean 
of the three predictions. 

The fifth point lies at the minimum velocity point and is very close to the 
value v* = 9.7 predicted by (23) using K = ~/2. 

The final point lies in the transition region between Regions 4 and 5. For 
Region 4 we predict v* = 9.7 using K = x/2 and v* = 10.7 using K -- 1.56. The 
prediction for Region 5 is v* = 9.2. Again, the best estimate is obtained by 
using K = 1.56 in (23). As a check we calculate the Bond Number and find 
that  B = (981 X 0.32 X 0.782)/21.8 = 3.2, which is consistent with the 
observation that  the prediction using the theory for Region 5 is slightly less 
than the prediction assuming that  Region 4 is appropriate. 
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